
The Honey Badger of BFT Protocols

Authors: Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, 
Dawn Song

Minqiang Hu
 10/29/2018



Timing assumptions considered harmful

● Weak Synchrony and Asynchronous BFT Protocol
● Why not weak synchrony

○ The liveness will fail when expected time assumptions 
are violated

○ Less throughput when network is unpredictable
● HoneyBadgerBFT guarantees liveness without making 

time assumptions

2/11



Asynchronous networks are the “harsh climates” of 
distributed computing

Full Synchrony: all messages are delivered within Δ time

Eventual Synchrony: after unknown time GST, all messages delivered within Δ

Partial Synchrony: Δ is unknown to the protocol

Weak Synchrony: Δt is time varying, but grows polynomially in t

Asynchronous: all messages are eventually delivered

3/11



4/11



The Approach
Adapt synchronous BFT for efficiency in the batch setting

1. Improve by O(N) by “refactoring” with known(but overlooked) primitives
2. Improve by another O(N) by using random selection and threshold encryption

5/11



Refactor of the transactions to mitigate node bandwidth 
bottleneck

PBFT broadcast standard way

P: leader

Leader bandwidthO(n*3)

6/11



Refactor of the transactions to mitigate node bandwidth 
bottleneck

Improved broadcast way

Leader bandwidthO(n)
7/11



Avoid sending redundant transactions-random 
selection and threshold encryption

8/11



Results: Optimal resilience and efficiency

Choose a large enough batch size, of B = Ω(λ N^2 logN).

 Total Bandwidth per transaction (for each node) is O(1). 
Expected # of rounds is O(LogN).

9/11



Implementation
Python protocol implementation, using gevent 

Threshold cryptography: Charm/PBC library

Signature:Boldyreva ‘03

Encryptions: Baek and Zhang ‘03

Experiments on local cluster, worldwide EC2, & over Tor

10/11



11

 Thank you!


